#### Topic 6G - Buffers

# **Buffers**

Solution containing a weak acid or base, plus the salt of its conjugate base or acid.

Acidic Buffer - weak acid + salt of conjugate base

$$H_3PO_4 + K^+H_2PO_4^-$$

Maintains pH < 7

Basic Buffer - weak base + salt of conjugate acid

$$(Na^+)_3PO_4^{3-} + (Na^+)_2HPO_4^{2-}$$

Maintains pH > 7

## **Buffer Action**

$$HA + H_2O \rightleftharpoons A^- + H_3O^+$$

reacts with reacts with acids ("sink" for OH $^-$ ) for  $H_3O^+$ )

## Calculating pH of a Buffer

If [HA] = [A], then

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} = [H_3O^+]$$

and pH = pK<sub>a</sub> (maximum buffer capacity)

Since 
$$[H_3O^+] = K_a \frac{[HA]}{[A^-]}$$
 then 
$$-\log[H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$
 Thus, 
$$pH = pK_a - \log \frac{[HA]}{[A^-]} = pK_a + \log \frac{[A^-]_{eq}}{[HA]_{eq}}$$

And since  $[HA]_{eq} \approx [HA]_i$  and  $[A^-]_{eq} \approx [A^-]_i$ , then

$$pH \approx pK_a + log \frac{[A^-]_i}{[HA]_i}$$

which is the so-called Henderson-Hasselbalch equation.

2 of 6



referred solutions causes a much greater change in the pH of the unbuffered solutions. Of the two buffered solutions, the one with higher buffer concentration resists pH changes more effectively.

### **Buffer Capacity**

The maximum amount of acid or base that can be added to a buffer before it loses its ability to resist pH changes.

If 
$$[HA] = 10 \times [A^{-}]$$
,

$$pH = pK_a + log \frac{[A^-]}{10[A^-]} = pK_a + log(0.1) = pK_a - 1$$

If 
$$[A^-] = 10 \times [HA]$$
,

$$pH = pK_a + log \frac{10 [HA]}{[HA]} = pK_a + log (10) = pK_a + 1$$

Thus, buffers act effectively in the range ± 1 pK<sub>a</sub>.

# **Buffering in Blood Plasma**

Behaviors of enzymes are markedly pH-dependent, and require the presence of buffers to optimize their effectiveness. The pH in cells is stabilized by a phosphate buffer system (HPO<sub>4</sub><sup>2-</sup> / H<sub>2</sub>PO<sub>4</sub><sup>-</sup>), while that in fluids, such as blood plasma, is stabilized by a bicarbonate buffer system (HCO<sub>3</sub><sup>-</sup> / H<sub>2</sub>CO<sub>3</sub>).

$$CO_2(g) \rightleftharpoons CO_2(aq)$$
 $CO_2(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq)$ 
 $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$ 

Thus, blood pH is influenced by the amount of CO<sub>2</sub> that is present in the blood. As pH decreases, effectiveness of transferring O<sub>2</sub> from hemoglobin in blood to myoglobin in cells increases:





6 of 6